Brachiocephalic artery transection with or without revascularization is performed for respiratory symptoms due to tracheal stenosis caused by brachiocephalic artery compression in patients with neurological or neuromuscular disorders [1]. Because tracheobrachiocephalic artery fistula development is associated with an extremely poor prognosis, evaluating the risk factors in a patient and preventing its development are essential before performing a tracheostomy [2]. The basic surgical approach in a brachiocephalic artery transection is a total or partial median sternotomy [1, 4]. Various alternatives, such as oblique partial manubriotomy [5], the suprasternal approach [3, 6], and the left anterior extrapleural approach [7], were reportedly effective in minimizing invasiveness and the risk of wound contamination. However, these alternatives are limited by various types of chest deformation and anatomical displacement of the brachiocephalic artery in individual cases [1].
Because tracheal stenosis in patients with severe motor and intellectual disabilities is caused by chest deformation, thoracoplasty holds out the promise of improving respiratory symptoms. Thoracoplasty via anterior bony thorax resection was designed by Grillo for use in cervical exenteration and mediastinal tracheostomy [8, 9]. However, to best of our knowledge, only one previous report in the English-language literature has described the application of thoracoplasty to tracheal compression in which a partial sternectomy combined with brachiocephalic artery transection was performed [10]. Moreover, few Japanese studies have examined the partial resection of the anterior bony thorax to treat or prevent tracheobrachiocephalic fistula development [11]. In previous studies describing sternal tumors, reconstruction of the chest wall was required to prevent flail chest and respiratory impairment and to protect the underlying mediastinal structures after a complete or partial sternectomy [12]. In contrast, the need for chest wall reconstruction in patients with severe motor and intellectual disabilities is unclear, and sternal resection and chest wall reconstruction are extremely invasive.
The thoracoplastic procedure described as an inverse T-shaped sternotomy in the present report is a simple method that allows the sternum to be left open after a partial sternotomy for subsequent brachiocephalic artery transection surgery. We speculate that traction, rather than the gap between the halves of the divided manubrium, is important for improving mediastinal narrowing. Since the clavicle and the first rib remain attached to the halves of the divided manubrium, traction to the left or right of the manubrium can be maintained by laterally transecting the sternum. Neither patient showed postoperative chest fragility or any movement in the halves of the manubrium when moving the upper limbs. The advantages of the current procedure are (1) its simplicity; (2) avoidance of a sternotomy from the cranial side where vessels are thickly concentrated in a narrow area, carrying the risk of fatal vessel injury [13]; (3) good operative field for brachiocephalic artery transection (Fig. 1c); (4) possibility of shifting the position of the sternal end of the clavicle laterally (left or right); (5) minimal impairment of chest function and minimal deformation of the bony sternum, and (6) ability to distance the skin incision from the tracheostomy to reduce the risk of wound contamination. In fact, a wider cut surface of the sternum carries a potentially higher risk of osteomyelitis; however, if osteomyelitis occurs, treatment is relatively easy to administer because the bony sternum is open and the wound can be distanced from the tracheostomy.
The present study has some limitations. First, it did not examine whether thoracoplasty or brachiocephalic artery transection was superior in improving respiratory symptoms although the findings suggested that the latter may be superior. Although thoracoplasty may not be essential, the procedure described in the present study is easy to apply in most patients with tracheal stenosis requiring a brachiocephalic artery transection. Second, the effect of thoracoplasty alone was not able to be assessed. The thoracoplastic procedure described here can preserve the brachiocephalic artery, but because it is indicated for life-threatening respiratory events, brachiocephalic artery transection should be performed if there are no contraindications, such as anomalies of the circle of Willis.