A 19-year-old man with no medical history or relevant family history was referred to our hospital because of elevated liver enzyme levels and abdominal distention. An abdominal computed tomography (CT) scan showed that his three main hepatic veins were completely obstructed and that the suprahepatic IVC had stenosis involving a membranous-like structure (Fig. 1a, b). Moreover, the CT scan revealed severe ascites and esophagogastric varices. Magnetic resonance imaging (MRI) showed a lack of patency and scarring in the main hepatic veins (Fig. 2). The patient’s laboratory findings before transplantation showed elevated total bilirubin and decreased platelet and prothrombin time (total bilirubin, platelet, and prothrombin time was 3.8 mg/dl, 150 × 103/ml, 56.2%, respectively). His Child–Pugh score was 11 (grade C), and his Model for End-stage Liver Disease score was 14. He was considered to have no blood disorders that could cause coagulation abnormalities, such as abnormal protein C and S activities. Accordingly, he was diagnosed with primary BCS and decompensated liver failure. Endovascular treatment for the main hepatic veins was considered; however, we recognized that it could be impossible to restore the patency of the hepatic vessels, and we did not perform the preoperative angiography. In addition, his esophagogastric varices were severe. For these reasons, we decided to perform LDLT 5 months after referral.
Donor candidates for LDLT were limited in this case. The eventual donor was his 46-year-old mother, who had no notable medical history and whose blood type was O Rh (+), identical to that of the patient. Based on preoperative CT investigation, we calculated that her estimated whole liver volume was 1047 ml. Her estimated left-lobe graft volume, estimated graft-to-recipient weight ratio (GRWR), and estimated ratio of liver remnant were 303 ml, 0.49, and 71.0%, respectively, which indicated that the size of the left-lobe graft was insufficient for the patient. On the other hand, in the right-lobe graft without the middle hepatic vein, the estimated graft volume was 734.2 ml, and the estimated GRWR was 1.19, which were sufficient for the patient. However, the estimated liver remnant was only 285.7 ml (31%), which was not applicable for our donor selection criteria. Under these mismatches, neither left-lobe graft nor right-lobe graft could be selected. For these reasons, we considered her RPSG, which could provide sufficient liver volume for the patient (estimated graft volume was 609 ml and GRWR was 0.99), and a safe residual liver volume for the donor (estimated ratio of liver remnant was 38.1%). There were no identified abnormalities of the portal vein, hepatic artery, bile duct, or hepatic vein in preoperative CT and MRI.
Donor hepatectomy was performed with a mid-line incision, and liver mobilization was performed using a laparoscopy-assisted technique. During mobilization, the root of the middle hepatic vein and the right hepatic vein (RHV) were identified. Then, anterior and posterior branches of the hepatic artery and portal vein were skeletonized. The transection line was marked on the liver surface according to the RHV and to the demarcation line when the posterior branch of the portal vein was temporarily clamped. Following a hanging maneuver, parenchymal transection was performed using a cavitron ultrasonic surgical aspiration system without occlusion of portal vein inflow. After transection of the liver parenchyma was completely finished, the biliary duct and portal vein of the right posterior branches were cut. Because the right posterior branch of the hepatic artery was thin and it was considered that anastomosis of this artery with recipient hepatic artery increased risks of artery-related complications, the donor’s right anterior branch of the hepatic artery was sacrificed after the artery blood flow in the anterior liver segment was detected by Doppler ultrasound with temporary clamping of the right hepatic artery, and then the right hepatic artery was cut at the root. Finally, the inferior right hepatic vein (IRHV) and RHV were cut, and the liver graft was harvested. The RPSG was flushed with 1000 ml of University of Wisconsin solution from the portal vein. The actual RPSG weight was 570 g.
Recipient surgery was started simultaneously with donor surgery. Prior to the abdominal incision, 16 cm of the SFV was harvested from his left leg for reconstruction of the IVC and hepatic vein. During the operation, there were approximately 3500 ml of ascites, and dense adhesions were seen around the IVC. The native liver was dark and hardened because of the liver congestion. The common bile duct, right and left hepatic arteries, and portal veins were cut, and then all three major hepatic veins, which were thickened and scarred, were cut while preserving the recipient IVC. Explantation of native, diseased liver was completed. The diseased liver weight was 1765 g, and the roots of three major hepatic veins were completely occluded.
At bench surgery, a longitudinal incision was made from the caudal side of the SFV graft, followed by ligation of the cranial side of the SFV graft. The graft RHV and IRHV was anastomosed to the sidewall of the SFV graft for patch plasty of the IVC (Fig. 3a, b).
For graft implantation, the infrahepatic IVC was mobilized and exposed, and then cross-clamping was performed. Venoveno bypass was not used during graft implantation because the collaterals were well developed, and the hemodynamic parameters were stable after IVC clamping. The thickened anterior suprahepatic IVC was longitudinally cut and opened, and the stenotic lesion of the IVC was identified (Fig. 4a). There were only a few patent millimeters in the IVC due to the membranous web-like obstruction, and there was no IVC thrombosis. The stenotic and thickened wall of the IVC was resected, and then an anastomotic orifice was created (Fig. 4b‒d). As the caliber of IVC orifice did not coincide with the RHV–IRHV–SFV graft, the SFV graft was cut between RHV and IRHV before anastomosis. The RPSG was placed into the recipient, and then patch cavoplasty procedures were performed. The RHV‒SFV graft patch was anastomosed to the IVC orifice using continuous 5-0 prolene sutures. After the graft portal vein was anastomosed to the patient’s main portal vein trunk and portal reperfusion started, Doppler ultrasonography showed satisfactory hepatic venous outflow, without any venous graft congestion. The IRHV with SFV patch was directly anastomosed to the IVC using side-clamping of the IVC after portal reperfusion started. Thereafter, the graft right hepatic artery was anastomosed to the patient’s right hepatic artery. Finally, bile duct reconstruction, involving a choledochojejunostomy, was performed. The surgical time, cold ischemia time, and warm ischemia time were 1028, 235, and 80 min, respectively. The blood loss during surgery was 8486 ml.
The donor had no complications and recovered rapidly, and was discharged at postoperative day (POD) 9. The recipient’s postoperative course was also uneventful. Daily Doppler ultrasound revealed patency of the RHV‒SFV graft without venous congestion of the liver, and postoperative CT imaging clearly showed the graft RHV and IRHV with no stenosis in the IVC (Fig. 5a, b). At 13 days after transplantation, the laboratory data showed a slight increase in liver transaminase, and angiography was performed to rule out the hepatic venous outflow block. The postoperative angiography showed no occlusion of the IVC and RHV, and the mean blood pressure of the peripheral RHV, the root of the RHV, IVC, and right atrium were 7 mmHg, 8 mmHg, 7 mmHg, and 4 mmHg, respectively. These findings revealed that the IVC and the graft RHV had sufficient patency, and there was no liver congestion. The increased liver transaminase then normalized spontaneously with no specific treatment. The patient was discharged at POD 28. He has continued to take edoxaban, a direct FXa inhibitor, as a prophylaxis for venous thrombosis. The patient’s condition was good at his last follow-up, 9 months after transplantation.