The stomach has numerous incoming vessels and is resistant to ischemia due to the rich microvascular network in its submucosal region [1, 2]. Although reports of gastric remnant necrosis after gastrectomy have been rare [3,4,5,6,7], mortality rates have been considerably high when present [6, 7]. A double elementary diet (W-ED) tube, which can be used for both enteral feeding and gastrointestinal tract decompression [8,9,10,11], had been developed for anastomotic leakage and postoperative nutritional management after upper gastroenterological surgery [8,9,10,11,12]. Herein, we report a case of gastric remnant necrosis after proximal gastrectomy that was successfully managed through conservative treatment with a W-ED tube.
Case presentation
A 73-year-old man underwent endoscopy for follow-up after endoscopic submucosal dissection (ESD), with findings showing a new lesion on the posterior wall of the upper portion of the gastric body. Although additional ESD had been performed, the pathology report revealed indistinct margins and an unknown depth. The submucosa was highly fibrotic, which made it difficult to dissect the submucosa and cause tears in the tumor, making it difficult to assess the margins and depth. The patient requested additional excision and was referred to our department. Pathological findings of the ESD specimen were as follows: tub1, 18 * 10 mm, pTX, INFa, pUL0, Ly0, V0. Endoscopy showed an ESD scar on the posterior wall of the upper gastric body, while computed tomography (CT) revealed no obvious regional lymph node enlargement or distant metastasis.
The patient was on medication for hypertension and hyperlipidemia; had undergone vascular replacement for an abdominal aortic aneurysm, vascular replacement surgery for an abdominal aortic aneurysm, and surgery to bypass the right common femoral artery and popliteal artery for atherosclerosis obliterans; and had been placed on aspirin and ethylicosapentate. It was a high-risk case and we also explained to him an option of follow-up, but since he wanted an additional resection, we planned proximal gastrectomy.
After admission, preoperative heparinization was started, followed by laparoscopic proximal gastrectomy, D1 + lymph node dissection, and esophagogastrostomy. Gastrectomy was performed at the line leaving approximately 1/2 of the stomach and preserved the right gastric artery and right gastroepiploic artery. Esophagogastrostomy was performed by anastomosing the anterior gastric wall and the posterior esophageal wall using a linear stapling device, while the common foramen was closed by hand-sewn suturing. The surgery was completed in 6 h and 48 min with a total blood loss of 299 mL and no blood transfusion. Abdominal drainage tubes were placed anterior to the anastomosis and under the left diaphragm.
On postoperative day (POD) 3, however, the patient developed a fever of 39 °C, with unremarkable abdominal symptoms and drainage fluid characteristics, as well as high C-reactive protein at 19 mg/dL, for which antimicrobial medication was started. Although no abdominal symptoms or drainage fluid abnormalities had been noted thereafter, the patient underwent an oral contrast study and CT on POD 8 due to his persistent febrile status (Fig. 1a), with findings showing no obvious sources of inflammation. Blood cultures taken on POD 7 showed evidence of candidemia, for which antifungal drugs were started. Despite antifungal drug treatment, no improvement in febrile status was noted, while CT on POD 13 (Fig. 1b) showed no obvious findings of anastomotic leakage or abscess formation. Endoscopy was thus performed to assess the internal gastrointestinal tract, including the anastomosis on POD 14, subsequently revealing ischemic changes in the gastric side of the anastomosis (Fig. 2a and b), which explained the development of candidemia. Discussions were then made regarding whether conservative treatment or reoperation would be appropriate. Given that the patient's vital signs were normal, gastric ischemia was localized, and surgery in the presence of candidemia was considered extremely risky, we opted for conservative treatment.
On the same day, a W-ED tube (16 Fr, 150 cm; manufactured by Covidien Japan), which allows for simultaneous enteral feeding and gastrointestinal tract decompression, was placed nasally (Fig. 3), and enteral nutrition (oligomeric formula, 1800 kcal/day) was started. Due to exacerbation of inflammation, the patient temporarily needed a high-flow nasal cannula for respiratory control. On POD 20, however, the inflammation showed a trend toward improvement. Dark red drainage fluid was observed from the drainage tube anterior to the anastomosis, while endoscopy findings on POD 24 showed gastric ischemia and anastomotic failure (Fig. 2c and d). As CT showed no obvious abscess formation and peritonitis (Fig. 1c), local drainage was considered to have been controlled by the abdominal drainage tube and W-ED tube. The drainage volume from the anterior anastomotic drain tube was less than 5 ml/day and the drainage volume from the W-ED tube was 50–100 ml/day, which reduced the inflow of drainage to the anterior anastomotic drain side. Considering that the patient’s vital signs remained stable, local drainage was well controlled, and the extent of necrosis was localized, we decided to continue conservative treatment. Collagen peptides were subsequently added to his enteral nutrition to promote wound healing. Endoscopy on POD 46 showed necrotic tissue shedding and mucosal neoformation (Fig. 2e and f). Moreover, the anterior drainage tube at the anastomosis was observed on endoscopy. Accordingly, the anterior wall side of the anastomosis was considered to have dropped out due to necrosis. Furthermore, the periphery of the anastomosis showed mucosal neogenesis after necrotic tissue prolapse, while the route of the abdominal drain tube was fistulized. The drain tube was shallowly extracted and adjusted to allow the opening to heal and close. On POD 52, drainage contrast study showed closure of the anastomotic leakage, after which the patient was allowed to start drinking water. While endoscopy on POD 60 showed healing of gastric necrosis and closure of the anastomotic leakage, anastomotic stenosis had been observed to the extent that only the endoscopic fiber could pass through. Thereafter, the W-ED tube was removed, enteral feeding was terminated, and the patient started on a liquid diet. Endoscopic anastomotic dilatation was performed on POD 66 (Fig. 4a and b), and after several anastomotic dilatations, the patient was able to consume solid food. The patient subsequently developed a urinary tract infection, which was controlled using antibacterial medication, and was discharged home on POD 88.
Regarding nutritional status, the patient had a preoperative serum albumin level of 4.1 g/dL. During the course of the treatment, his lowest serum albumin level was 1.7 g/dL, which gradually recovered with enteral nutritional management and increased to 2.9 g/dL prior to discharge. The patient had a preoperative weight and body mass index of 73 kg and 25.6, respectively, and a body composition showing 46.2 kg of muscle mass, 24.2 kg of body fat, and 33.2% body fat percentage. However, upon discharge from the hospital, his weight decreased to 65.0 kg and BMI to 22.8, with 45.6 kg of muscle mass, 16.8 kg of body fat, and 25.8% body fat percentage, although his muscle mass was relatively well maintained through enteral nutritional management and rehabilitation.
Pathological findings of the resected specimen showed no tumor remnants and no lymph node metastasis. Follow-up endoscopy after discharge showed that the diameter of the anastomosis was maintained (Fig. 4c and d).